# Higher Poisson manifolds and higher Koszul–Schouten brackets

HEP Young Theorists' Forum 14-15 May 2009, University College London

#### Andrew James Bruce

School of Mathematics, University of Manchester, UK

email:a.bruce@maths.manchester.ac.uk



## Introduction

## Higher Poisson manifolds?

- Classical Poisson structures are bi-vectors.
- Higher Poisson structures are more general (inhomogenous) multivector fields.

## Aim of talk

#### Describe

- Higher Poisson brackets on functions.
- Higher Koszul-Schouten brackets on differential forms.



## Differential forms, multivectors and Cartan calculus

## Antitangent bundle, $\sqcap TM$

$$\{x^A, dx^A\}.$$

$$x^A o \overline{x}^A(x), \qquad dx^A o d\overline{x}^A = dx^B \left( \frac{\partial \overline{x}^A}{\partial x^B} \right).$$

## Anticotangent bundle, $\Box T^*M$

$$\{x^A, x_A^*\}.$$

$$x^A o \overline{x}^A(x), \qquad x_A^* o \overline{x}_A^* = \left( rac{\partial x^B}{\partial \overline{x}^A} 
ight) x_B^*.$$

#### Define

$$\Omega^*(M) = C^{\infty}(\Pi TM)$$
 and  $\mathfrak{X}^*(M) = C^{\infty}(\Pi T^*M)$ 



## Differential forms, multivectors and Cartan calculus

### The Cartan calculus;

**1** Exterior derivative 
$$d = dx^A \frac{\partial}{\partial x^A}$$

2 Interior product 
$$i_X = (-1)^{\tilde{X}+1} X(x, \partial_{dx})$$

with 
$$X = X(x, x^*) \in \mathfrak{X}^*(M)$$
.

## The Schouten-Nijenhuis bracket;

$$[\![X,Y]\!]=(-1)^{(\widetilde{A}+1)(\widetilde{X}+1)}\tfrac{\partial X}{\partial x_A^*}\tfrac{\partial Y}{\partial x^A}-(-1)^{\widetilde{A}(\widetilde{X}+1)}\tfrac{\partial X}{\partial x^A}\tfrac{\partial Y}{\partial x_A^*},$$

## Important result;

$$[L_X,L_Y]=L_{\llbracket X,Y\rrbracket}.$$



# $L_{\infty}$ – algebras

A series of odd brackets on vector space s.t.

The operators are symmetric

$$(a_1,a_2,\cdots,a_i,a_j,\cdots,a_n)=(-1)^{\widetilde{a}_i\widetilde{a}_j}(a_1,a_2,\cdots,a_j,a_i,\cdots,a_n).$$

2 The generalised Jacobi identites or Jacobiator

$$\sum_{k+l=n} \sum_{(k,l)-\text{shuffels}} \pm \left( (a_{\sigma(1)}, \cdots, a_{\sigma(k)}), a_{\sigma(k+1)}, \cdots, a_{\sigma(k+1)} \right) = 0,$$

hold for all n.

A (k, I)-shuffle is a permutation of the indices  $1, 2, \dots, k+I$  such that  $\sigma(1) < \dots < \sigma(k)$  and  $\sigma(k+1) < \dots < \sigma(k+I)$ .



# $L_{\infty}$ – algebras

The first few Jacobiators are;

$$J^{0} = ((\emptyset)) = 0$$

$$J^{1} = ((a)) + ((\emptyset), a) = 0$$

$$J^{2} = ((a, b)) + ((a), b) + (-1)^{\widetilde{a}\widetilde{b}}((b), a) + ((\emptyset), a, b) = 0$$

$$J^{3} = ((a, b, c)) + ((a, b), c) + (-1)^{\widetilde{b}\widetilde{c}}((a, c), b)$$

$$+ (-1)^{\widetilde{a}(\widetilde{b}+\widetilde{c})}((b, c), a) + ((a), b, c) + (-1)^{\widetilde{a}\widetilde{b}}((b), a, c)$$

$$+ (-1)^{(\widetilde{a}+\widetilde{b})\widetilde{c}}((c), a, b) + ((\emptyset), a, b, c) = 0$$

Warning other conventions on grading and symmetry exist.



## Higher Poisson structures and brackets

#### **Definition**

A manifold M equipped with an even multivector field  $P \in \mathfrak{X}^*(M)$  such that  $[\![P,P]\!] = 0$ , is as a **higher Poisson manifold**.

## **Definition**

The higher Poisson brackets defined by

$$\{f_1, f_2, \cdots, f_r\}_P = [\![\cdots]\![[\![P, f_1]\!], f_2]\!], \cdots, f_r]\!]|_M,$$
 with  $f_I \in C^{\infty}(M)$ .

The higher Poisson brackets form an  $L_{\infty}$ -algebra.

Jacobiators = 
$$0 \Leftrightarrow \llbracket P, P \rrbracket = 0$$
.



# Higher Koszul-Schouten brackets

#### **Definition**

The higher Koszul–Schouten brackets are defined by

$$[\alpha_1, \alpha_2, \cdots, \alpha_r]_P = [\cdots [[L_P, \alpha_1], \alpha_2], \cdots, \alpha_r] \mathbb{1},$$

where  $\alpha_I \in \Omega^*(M)$  and 1 is the identity zero form.

The higher Koszul–Schouten brackets form an  $L_{\infty}$ -algebra.

Jacobiators = 0 
$$\Leftrightarrow$$
  $(L_P)^2 = \frac{1}{2}[L_P, L_P] = \frac{1}{2}L_{\|P,P\|} = 0.$ 

# Relation between the higher Possion and Koszul–Schouten brackets

#### **Theorem**

The higher Koszul–Schouten brackets and the higher Poisson brackets satisfy the following;

2 
$$[f_1, f_2, \dots, f_r]_P = 0$$
 for  $r > 1$ ,

**Warning** There is a proviso that P is polynomial in  $x^*$ 



## Relation to BV-antifield formulism

### Finite dimensional "model"

antifields ↔ anticoordinate extended classical action ↔ higher Poisson structure . antibracket ↔ Schouten–Nienhuis bracket.

Then we have an  $L_{\infty}$ -algebra structure on;

- the space of field and ghost valued functions (goes back to Jim Stasheff),
- the space of field and ghost valued differential forms (appears new).



## **Bibliography**

- Th. Th. Voronov. Higher derived brackets and homotopy algebras, 2005.
- H.M. Khudaverdian and Th. Th. Voronov.

  Differential forms and odd symplectic geometry, 2006.
- H.M. Khudaverdian and Th. Th. Voronov. Higher Poisson brackets and differential forms, 2008.
- Tom Lada and Jim Stasheff.
  Introduction to SH Lie algebras for physicists, 1993.

